Neural Mechanisms Underlying the Computation of Hierarchical Tree Structures in Mathematics
نویسندگان
چکیده
Whether mathematical and linguistic processes share the same neural mechanisms has been a matter of controversy. By examining various sentence structures, we recently demonstrated that activations in the left inferior frontal gyrus (L. IFG) and left supramarginal gyrus (L. SMG) were modulated by the Degree of Merger (DoM), a measure for the complexity of tree structures. In the present study, we hypothesize that the DoM is also critical in mathematical calculations, and clarify whether the DoM in the hierarchical tree structures modulates activations in these regions. We tested an arithmetic task that involved linear and quadratic sequences with recursive computation. Using functional magnetic resonance imaging, we found significant activation in the L. IFG, L. SMG, bilateral intraparietal sulcus (IPS), and precuneus selectively among the tested conditions. We also confirmed that activations in the L. IFG and L. SMG were free from memory-related factors, and that activations in the bilateral IPS and precuneus were independent from other possible factors. Moreover, by fitting parametric models of eight factors, we found that the model of DoM in the hierarchical tree structures was the best to explain the modulation of activations in these five regions. Using dynamic causal modeling, we showed that the model with a modulatory effect for the connection from the L. IPS to the L. IFG, and with driving inputs into the L. IFG, was highly probable. The intrinsic, i.e., task-independent, connection from the L. IFG to the L. IPS, as well as that from the L. IPS to the R. IPS, would provide a feedforward signal, together with negative feedback connections. We indicate that mathematics and language share the network of the L. IFG and L. IPS/SMG for the computation of hierarchical tree structures, and that mathematics recruits the additional network of the L. IPS and R. IPS.
منابع مشابه
A novel algorithm to determine the leaf (leaves) of a binary tree from its preorder and postorder traversals
Binary trees are essential structures in Computer Science. The leaf (leaves) of a binary tree is one of the most significant aspects of it. In this study, we prove that the order of a leaf (leaves) of a binary tree is the same in the main tree traversals; preorder, inorder, and postorder. Then, we prove that given the preorder and postorder traversals of a binary tree, the leaf (leaves) of a bi...
متن کاملUncertainty analysis of hierarchical granular structures for multi-granulation typical hesitant fuzzy approximation space
Hierarchical structures and uncertainty measures are two main aspects in granular computing, approximate reasoning and cognitive process. Typical hesitant fuzzy sets, as a prime extension of fuzzy sets, are more flexible to reflect the hesitance and ambiguity in knowledge representation and decision making. In this paper, we mainly investigate the hierarchical structures and uncertainty measure...
متن کاملIntelligent identification of vehicle’s dynamics based on local model network
This paper proposes an intelligent approach for dynamic identification of the vehicles. The proposed approach is based on the data-driven identification and uses a high-performance local model network (LMN) for estimation of the vehicle’s longitudinal velocity, lateral acceleration and yaw rate. The proposed LMN requires no pre-defined standard vehicle model and uses measurement data to identif...
متن کاملOrganization of Gatekeeping and Mental Framework in the System of Representation and Hierarchical Relational Structures of the Modern Society
Critical discourse analysis as a type of social practice reveals how linguistic choices enable speakers to manipulate the realizations of agency and power in the representation of action.The present study examines the relationship between language and ideology and explores how such a relationship is represented in the analysis of spoken text and to show how declarative knowledge, beliefs, attit...
متن کاملAIDS Epidemic Modeling With Different Demographic Structures
The most urgent public health problem today is to devise effective strategies to minimize the destruction caused by the AIDS epidemic. Mathematical models based on the underlying transmission mechanisms of the AIDS virus can help the medical/scientific community understand and anticipate its spread in different populations and evaluate the potential effectiveness of different approaches for bri...
متن کامل